1. From the evidence, candidates may have identified compound **F** as propanone, propanal or propanoic acid

If **F** is propanone or propanoic acid, then maximum score = 7; **but** if **F** is propanal then maximum score = 6

The mark scheme for \mathbf{F} = propanone and propanal is shown below.

mass spec of E- Remember to check the spectrum

Quality of Written Communication – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃ OR m/z = 45 indicates presence of CH₃CHOH OR CH₂CH₂OH OR C₂H₅O \checkmark

IR of F – Remember to check the spectrum

IR shows no broad absorption between 2500 to 3300 cm⁻¹ so no O—H bond **OR** no broad absorption between 2500 to 3300 cm⁻¹ so not a carboxylic acid \checkmark

IR shows absorption at 1700 cm^{-1} due to a C=O bond OR absorption at 1700 cm^{-1} indicates a ketone OR aldehyde present

Identification and equation

F is CH_3COCH_3 **OR** propanone \checkmark

E is CH₃CHOHCH₃ **OR** propan-2-ol ✓

 $CH_3CHOHCH_3 + [O] \rightarrow CH_3COCH_3 + H_2O \checkmark$

If **F** has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2

ALLOW E is $CH_3CH_2CH_2OH \checkmark$

ALLOW: $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$

The mark scheme for \mathbf{F} = propanoic acid is shown below.

mass spec of E– Remember to check the spectrum QWC – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (OR m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃ OR m/z = 45 indicates presence of CH₃CHOH OR CH₂CH₂OH OR C₂H₅O \checkmark

IR of F- Remember to check the spectrum

IR shows (broad) absorption somewhere between 3500 and 2500 cm $^{-1}$ suggests carboxylic acid **OR** O–H bond \checkmark

IR shows absorption at 1700 cm⁻¹ due to C=O **OR** absorption at 1700 cm⁻¹ indicates a carboxylic acid \checkmark

Identification and equation

F is CH₃CH₂COOH **OR** propanoic acid \checkmark

E is CH₃CH₂CH₂OH **OR** propan-1-ol ✓

 $CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark$

Extra guidance for marking of question

If E has not been identified OR if F has been identified as a ketone or aldehyde, use the first mark scheme

If F has been identified as a carboxylic acid, use the second mark scheme

Mass spec

These two marking points stand as **independent** marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of F e.g. if E is pentan-2-ol \checkmark then an answer of pentan-2-one for F will be given a mark \checkmark as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of **any** alcohol to the appropriate product.

ALLOW molecular formulae in equations,

i.e. $C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

[7]

2. (a) **method 1:**

fermentation of sugars or carbohydrates **OR** reaction with yeast with sugar or carbohydrates \checkmark C₆H₁₂O₆ \rightarrow 2C₂H₅OH + 2CO₂ \checkmark

method 2:

hydration of ethene **OR** reaction of ethene with water **OR** reaction of steam with ethene \checkmark

 $C_{2}H_{4} + H_{2}O \rightarrow C_{2}H_{5}OH \checkmark$ ALLOW sugar from equation ALLOW $C_{2}H_{6}O$ in equation ALLOW correct multiples IGNORE state symbols ALLOW ethene from the equation IGNORE mention of any catalyst ALLOW $C_{2}H_{6}O$ in equation OR $H_{2}O$ over the arrow ALLOW correct multiples IGNORE state symbols

4

2

(b) (i) $(CH_3)_2CO \mathbf{OR}$

(ii) CH_3CH_2COOH **OR** propanoic acid \checkmark

Any number or range of numbers between 1750–1640 (cm⁻¹) for C=O \checkmark

Any number or range of numbers between 2500–3300 (cm⁻¹) for O–H \checkmark

ALLOW C=O and O—H marks independent of compound identified i.e. stand alone marks ALLOW correct bonds shown by the appropriate absorption on the IR spectrum IGNORE reference to C—O bond

- (c) (i) 2-methylpropan-2-ol ✓ *ALLOW methylpropan-2-ol OR tertiarybutanol*
 - (ii) ester ✓

(iii) CH₃CO₂C(CH₃)₃ **OR** CH₃COOC(CH₃)₃ **OR**

H₃C ·C(CH₂)₂

ester group shown \checkmark

rest of molecule ✓ *ALLOW* skeletal formula **OR** displayed formula *ALLOW* ester linkage even if rest of structure is wrong

[13]

3

1

1

2

3. (a) (i)

C–I curly arrow from the bond not from carbon atom \checkmark

curly arrow from the OH^{-} \checkmark

correct partial charges on C—I \checkmark

no need to show any lone pairs on oxygen but must have a clear negative sign rather than partial negative charge IGNORE lone pairs IGNORE products of this reaction

ALLOW curly arrow from a negative charge or from any part of hydroxide ion

If S_NI mechanism is given then use the mark scheme below correct partial charges on $C-I \checkmark$

C–I curly arrow from the bond not from carbon atom \checkmark

curly arrow from the OH⁻ to the correct carbocation \checkmark

3

1

(ii) nucleophilic substitution \checkmark

(b) C-I bonds broken more easily ✓
 C-I bonds are weaker OR have less bond enthalpy OR C-I bonds are longer ✓
 ALLOW ora e.g. C—Br bonds are stronger OR broken less easily

[6]

2

- 4. from IR absorption, J contains O−H OR from IR J is an alcohol✓
 - C: H: O = $\frac{70.59}{12.0}$: $\frac{13.72}{1.0}$: $\frac{15.69}{16.0}$

OR 5.8825 : 13.72 : 0.9806 ✓

empirical formula = $C_6H_{14}O$ \checkmark

(from mass spectrum), $M_{\rm r} = 102$ \checkmark

evidence that it has been shown that the empirical formula is the molecular formulae e.g. Mr of $C_6H_{14}O = 102$ so empirical formula is molecular formula \checkmark

If more than three isomers of $C_6H_{13}OH$ drawn • 1 branched and 3 unbranched award two marks • any other combination award one mark ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan-3-ol if structures not drawn [8] (i) Any two realistic fragments, *e.g.* CH_3^+ : 15; $C_2H_5^+$: 29; $C_3H_7^+$: 43; $C_4H_9^+$: 57; OH^+ : 17, *etc.* (1) (1) Do not penalise missing charge. 2 (ii) breathalysers/monitoring of air pollution, MOT emission testing, etc. (1) 1 [3] mole ratio = 88.89/12 : 11.1/1 = 7.41 : 11.1 (1) empirical formula = C_2H_3 (1) relative mass of $C_2H_3 = 27$. $M_{\rm r} = 2 \times 29$ so molecular formula = C4H6 (1) X reacts with 2 mol H_2 so there are 2 double bonds (1) Possible structure = 1,3-butadiene / (1)[5]

ALLOW two marks for correct empirical formula with no

ALLOW one minor slip in drawing structures e.g. one missing hydrogen but *ALLOW* ecf for bigger slips such as showing just

ALLOW one mark for three isomers of $C_6H_{13}OH$ whether branched or unbranched as a catch mark if no other mark has

ALLOW structural or displayed formulae

One mark for each correct structure $\checkmark \checkmark \checkmark$

working out

This is a QWC mark

This is a QWC mark

IGNORE incorrect names

sticks and no hydrogen atoms *ALLOW* bond to H in OH

been awarded for the structures

7. (a) (i)
$$H^+$$

 $Cr_2O_7^{2-}$
(ii) Orange to green/black/blue 1

(b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/

5.

6.

7

1

carbonyl/carbonyl in an aldehyde

(ii) does not contain a O-H/ (hydrogen bonded in a) carboxylic acid
(iii) distillation (no mark) because distillation allows loss of volatile
(iii) components /removes butanal from oxidising mixture
prevents formation of RCOOH/ partial oxidation would be achieved
or reverse argument for reflux not being used
in that reflux prevents loss of volatile components
hence complete oxidation would be achieved/RCOOH would be formed

8. (i)
$$H^{+} \checkmark Cr_{2}O_{7}^{2}$$

(ii)
compound E
 $H_{3}C - CH_{2} - CH_$

 10. acrylic acid
 1

 approx 1700 cm⁻¹ (range 1650 - 1750) indicates C=O
 1

[7]

1

(b)	Observation	decolourisation (of Br ₂) \checkmark	1
	Molecular formula	$C_{10}H_{18}OBr_4 \checkmark \checkmark$	2
		C ₁₀ H ₁₈ OBr ₂ gets 1 mark	
(c)	reagent	СН₃СООН ✓	1
	catalyst	$\rm H_2SO_4/H^+/HCl$ (aq) or dilute loses the mark \checkmark	1
(d)	(i) $C_{10}H_{18}O + 2[O]$	$\rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2