1. From the evidence, candidates may have identified compound \mathbf{F} as propanone, propanal or propanoic acid
If \mathbf{F} is propanone or propanoic acid, then maximum score $=7$; but if \mathbf{F} is propanal then maximum score $=6$

The mark scheme for $\mathbf{F}=$ propanone and propanal is shown below.

mass spec of E -Remember to check the spectrum

Quality of Written Communication - mass spec gives M^{+}or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m / z (ALLOW m / e) value is $60 \checkmark$
$m / z=45$ indicates loss of CH_{3}
OR $m / z=45$ indicates presence of $\mathrm{CH}_{3} \mathrm{CHOH}$
OR CH $2_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR C $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark$

IR of \mathbf{F} - Remember to check the spectrum

IR shows no broad absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ so no $\mathrm{O}-\mathrm{H}$ bond
OR no broad absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ so not a carboxylic acid
IR shows absorption at $1700 \mathrm{~cm}^{-1}$ due to a $\mathrm{C}=\mathrm{O}$ bond
$\mathbf{O R}$ absorption at $1700 \mathrm{~cm}^{-1}$ indicates a ketone $\mathbf{O R}$ aldehyde present

Identification and equation
\mathbf{F} is $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ OR propanone
\mathbf{E} is $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$ OR propan-2-ol
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

If \mathbf{F} has been incorrectly identified as propanal, mark identification and equation as ECF, so $\max =2$
ALLOW \mathbf{E} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
ALLOW: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$

The mark scheme for $\mathbf{F}=$ propanoic acid is shown below.
mass spec of \mathbf{E}-Remember to check the spectrum
QWC - mass spec gives M^{+}or molecular ion of 60
OR mass spec gives parent ion of 60
OR highest $m / z(\mathbf{O R} m / e)$ value is 60
$m / z=45$ indicates loss of CH_{3}
OR $m / z=45$ indicates presence of $\mathrm{CH}_{3} \mathrm{CHOH}$
OR CH $2_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR C $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark$

IR of F-Remember to check the spectrum

IR shows (broad) absorption somewhere between 3500 and $2500 \mathrm{~cm}^{-1}$ suggests carboxylic acid OR O-H bond
IR shows absorption at $1700 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$
OR absorption at $1700 \mathrm{~cm}^{-1}$ indicates a carboxylic acid \checkmark

Identification and equation
\mathbf{F} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \mathbf{O R}$ propanoic acid
\mathbf{E} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR propan-1-ol
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$

Extra guidance for marking of question

If \mathbf{E} has not been identified $\mathbf{O R}$ if \mathbf{F} has been identified as a ketone or aldehyde, use the first mark scheme
If \mathbf{F} has been identified as a carboxylic acid, use the second mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.
The positive sign for fragment ions is not required. IGNORE negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as independent marks whichever compounds have been identified.
The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must both be correct but allow 'propanol' drawn with the correct structure because the position number of the -OH has been clearly identified

ALLOW ECF for identification of \mathbf{F} e.g. if \mathbf{E} is pentan-2-ol \boldsymbol{X} then an answer of pentan-2-one for \mathbf{F} will be given a mark \checkmark as ECF
ALLOW identification marks for \mathbf{E} and \mathbf{F} from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate product.
ALLOW molecular formulae in equations,
i.e. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark ; \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \checkmark$;
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COH}+\mathrm{H}_{2} \mathrm{O} \checkmark$

2. (a) method 1:

fermentation of sugars or carbohydrates $\mathbf{O R}$ reaction with
yeast with sugar or carbohydrates
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$

method 2:

hydration of ethene OR reaction of ethene with water OR reaction of steam with ethene

$$
\begin{aligned}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark \\
& \text { ALLOW sugar from equation } \\
& \text { ALLOW } C_{2} \mathrm{H}_{6} \mathrm{O} \text { in equation } \\
& \text { ALLOW correct multiples } \\
& \text { IGNORE state symbols } \\
& \text { ALLOW ethene from the equation } \\
& \text { IGNORE mention of any catalyst } \\
& \text { ALLOW } C_{2} \mathrm{H}_{6} \mathrm{O} \text { in equation } \boldsymbol{O R} \mathrm{H}_{2} \mathrm{O} \text { over the arrow } \\
& \text { ALLOW correct multiples } \\
& \text { IGNORE state symbols }
\end{aligned}
$$

(b) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ OR

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+[\mathrm{O}] \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
If name and formula given both need to be correct
ALLOW propanone $\boldsymbol{O R}$ acetone
IGNORE propone
NOT incorrect named compound
ALLOW $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
ALLOW O instead of [O]
ALLOW correct multiples
IGNORE state symbols
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \mathbf{O R}$ propanoic acid

Any number or range of numbers between $1750-1640\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{C}=\mathrm{O} \checkmark$

Any number or range of numbers between $2500-3300\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H} \checkmark$

ALLOW C=O and $O-H$ marks independent of compound identified i.e. stand alone marks
ALLOW correct bonds shown by the appropriate absorption on the IR spectrum
IGNORE reference to $C-O$ bond
(c) (i) 2-methylpropan-2-ol

ALLOW methylpropan-2-ol OR tertiarybutanol
(ii) ester \checkmark
(iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ OR $\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$

OR

ester group shown
rest of molecule
ALLOW skeletal formula OR displayed formula
ALLOW ester linkage even if rest of structure is wrong
3. (a) (i)

C-I curly arrow from the bond not from carbon atom \checkmark
curly arrow from the OH^{-}
correct partial charges on $\mathrm{C}-\mathrm{I} \checkmark$
no need to show any lone pairs on oxygen but must have a clear negative sign rather than partial negative charge
IGNORE lone pairs
IGNORE products of this reaction
ALLOW curly arrow from a negative charge or from any part of hydroxide ion

If $S_{N} 1$ mechanism is given then use the mark scheme below correct partial charges on $C-I$
C-I curly arrow from the bond not from carbon atom curly arrow from the OH^{-}to the correct carbocation

(ii) nucleophilic substitution \checkmark
(b) $\mathrm{C}-\mathrm{I}$ bonds broken more easily C-I bonds are weaker OR have less bond enthalpy OR C-I bonds are longer \checkmark

ALLOW ora e.g. $C-B r$ bonds are stronger OR broken less easily
4. from IR absorption, \mathbf{J} contains $\mathrm{O}-\mathrm{H} \mathbf{O R}$ from $\mathrm{IR} \mathbf{J}$ is an alcohol \checkmark
$\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{70.59}{12.0}: \frac{13.72}{1.0}: \frac{15.69}{16.0}$
OR 5.8825: 13.72: 0.9806
empirical formula $=\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O} \checkmark$
(from mass spectrum), $M_{\mathrm{r}}=102$
evidence that it has been shown that the empirical formula is the molecular formulae e.g. $M r$ of $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}=102$ so empirical formula is molecular formula

One mark for each correct structure
This is a QWC mark
ALLOW two marks for correct empirical formula with no
working out
This is a QWC mark
ALLOW structural or displayed formulae IGNORE incorrect names
ALLOW one minor slip in drawing structures e.g. one missing hydrogen but ALLOW ecf for bigger slips such as showing just sticks and no hydrogen atoms
ALLOW bond to H in OH
ALLOW one mark for three isomers of $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$ whether branched or unbranched as a catch mark if no other mark has been awarded for the structures
If more than three isomers of $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$ drawn

- 1 branched and 3 unbranched award two marks
- any other combination award one mark

ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan-3-ol if structures not drawn
5. (i) Any two realistic fragments, e.g. $\mathrm{CH}_{3}{ }^{+}: 15 ; \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}: 29 ; \mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}: 43 ; \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}: 57 ; \mathrm{OH}^{+}: 17$, etc. (1) (1) Do not penalise missing charge.
(ii) breathalysers/monitoring of air pollution, MOT emission testing, etc. (1) 1
6. mole ratio $=88.89 / 12: 11.1 / 1=7.41: 11.1$ (1)
empirical formula $=\mathrm{C}_{2} \mathrm{H}_{3}$ (1)
relative mass of $\mathrm{C}_{2} \mathrm{H}_{3}=27$.
$M_{\mathrm{r}}=2 \times 29$ so molecular formula $=$ C4H6 (1)
\mathbf{X} reacts with $2 \mathrm{~mol}_{\mathrm{H}}^{2}$ so there are 2 double bonds (1)
Possible structure $=1,3$-butadiene $/$

(1)
7. (a) (i) $\mathrm{H}^{+} \quad 1$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \quad 1$
(ii) Orange to green/black/blue 1
(b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/ 1
carbonyl/carbonyl in an aldehyde
(ii) does not contain a $\mathrm{O}-\mathrm{H} /$ (hydrogen bonded in a) carboxylic acid
(iii) distillation (no mark) because distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of $\mathrm{RCOOH} /$ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved $/ \mathrm{RCOOH}$ would be formed \checkmark
8. (i) $\mathrm{H}^{+} \checkmark \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(ii)
compound E

$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$

(iii) carboxylic acid would have an absorption between
$1680-1750 \mathrm{~cm}^{-1} / 1700 \mathrm{~cm}^{-1}$ or $2500-3300 \mathrm{~cm}^{-1}$.
9. (a)
(i) (volatile components) can escape/distil out 1 ethanal is most volatile/b pt less than $60^{\circ} \mathrm{C} /$ partial oxidation 1
(ii) (volatile components) cannot escape/ refluxed 1
complete oxidation will be achieved/oxidised to the acid 1
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark\right)$
2
(c) spectrum C 1
spectrum C only shows absorption at $1700 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{O} \quad 1$
the other two spectra contain the OH group absorption at approx $3000 \mathrm{~cm}^{-1} \quad 1$
10. acrylic acid
approx $1700 \mathrm{~cm}^{-1}$ (range $1650-1750$) indicates $\mathrm{C}=\mathrm{O}$
approx $3000 \mathrm{~cm}^{-1}$ (range 2500-3300) indicates O-H
not $3230-3550 \mathrm{~cm}^{-1}$
11. (a) (i) alkene $\checkmark \quad 1$
alcohol/hydroxy/hydroxyl
(b) (i) I $=$ alkene \& II $=$ alcohol.. both are needed
(ii) decolourised / colourless $\checkmark \quad 1$
(iii) $\checkmark \quad 1$

(iv) \mathbf{X} as shown below $\checkmark \quad 1$

(c) (i) $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Rh} / \mathrm{Pd} \checkmark \quad 1$
(ii) compound \mathbf{B} is $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark \quad 1$
(iii) $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark \quad 1$
12. (a) (i) Alkene $/ \mathrm{C}=\mathrm{C} \checkmark \quad 1$

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH^{-}or hydroxide) $\checkmark \quad 1$
(ii) One of the C in both $\mathrm{C}=\mathrm{C}$ is joined to two atoms or groups that are the same \checkmark

